
Interaction laser-matière : relations structure/propriétés

Interaction laser dans les verres inorganiques et processus optiques non linéaires

Philippe THOMAS

Science des Procédés Céramiques et de Traitements de Surface

UMR CNRS 7315 Université de Limoges - ENSCI- CNRS www.unilim.fr/spcts

Directeur: T. Chartier

Centre Européen de la Céramique

Personnel:

154 personnes - 84 permanents

47 Professeurs et Maître de Conférences

13 Chercheurs CNRS

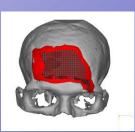
24 Ingénieurs et Techniciens

70 Etudiants en thèse et Post-docs

SPCTS laboratoire de recherche

Impliqué sur des sujets d'enjeux sociétaux comme :

- les micro/nanotechnologies ex : «matériaux nanostructurés», MEMs


- les matériaux pour l'électronique et l'optoélectronique (TIC) ex : verres à fort indice non linéaire

 les nouvelles technologies de l'énergie
 ex : piles à combustible (SOFC) - gaz de synthèse nucléaire

- les biomatériaux ex : apatites substituées, carbonates

- l'environnement

ex : matrices de conditionnement - filtration

- 1) Introduction: optique non-linéaire
- 2) Propriétés optiques non-linéaires dans les verres

Non linéarité optique d'ordre trois

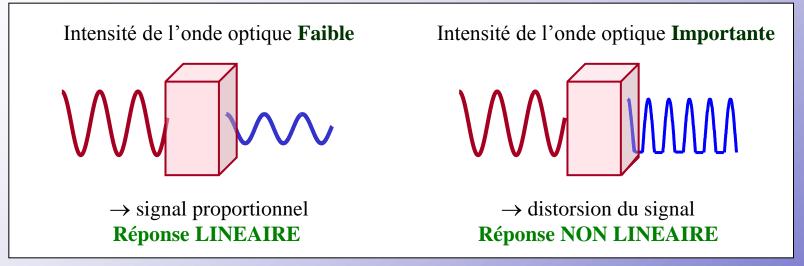
Non linéarité optique d'ordre deux

Illustrations: structure / propriétés des verres (cas particulier des verres « tellurites »: à base de TeO₂)

Matériaux

Propriétés recherchées:

- réponse optique non-linéaire intense et rapide
- faible coefficient d'absorption
- large domaine de transparence

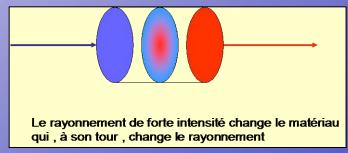


candidats potentiels : cristaux, polymères, verres oxydes inorganiques (verres oxydes offrent un très bon compromis)

Optique non linéaire

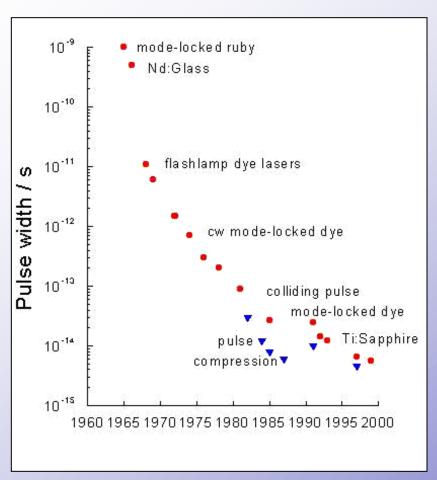
Propriétés optiques d'un matériau: interaction onde optique (E, H, lois de Maxwell)-matière

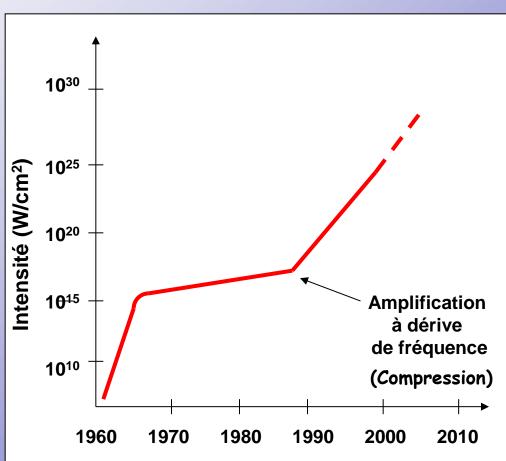
Réponse du matériau à une onde électromagnétique

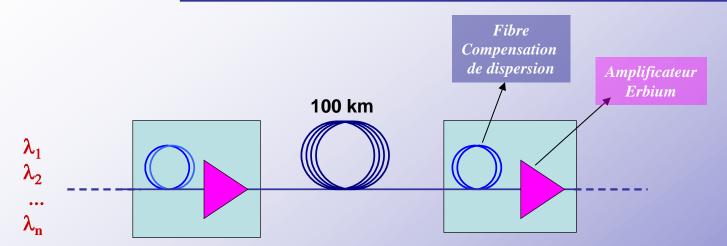

Phénomènes d'Optique Non Linéaire dans un matériau.

(Schéma de principe)

Onde modifiée: déviation géométrique, absorption,

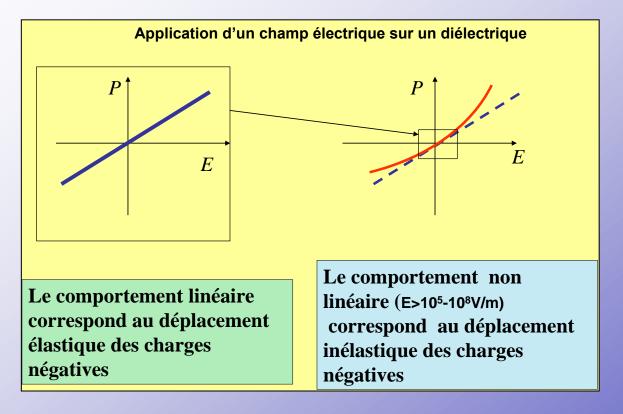

changement de polarisation...


Milieu modifié: indice


L'ONL décrit les phénomènes qui résultent de l'interaction entre un faisceau de grande intensité et un matériau

ONL introduite par N. Bloembergen en 1965: découverte des lasers: Maiman, 1960

Telecommunication



Enjeux

Plus de fréquences

Diminuer le nombre d'amplificateur

Commutation optique....

Origine microscopique de l'optique non linéaire : apparition d'une polarisation P sous l'action d'un champ électrique E.

Composés	Polarisabilités ($Å^3$)	Hyperpolarisabilité					
	α^+ (cations)	α ⁻ (anions)	(10 ⁻³⁹ ues)					
			γ ⁺ (cations)	γ̄ (anions)				
LiF	0,032	0,848	0,17	240				
NaF	0,158	1,130	3,61	518				
KF	0,839	1,280	62,4	780				
RbF	1,390	1,380	174,0	1014				
LiCl	0,032	2,810	0,17	1210				
NaCl	0,158	3,260	3,55	2030				
KCl	0,839	3,500	62,4	2750				
RbCl	1,390	3,680	174,0	3444				
LiBr	0,032	3,860	0,17	2030				
NaBr	0,158	4,400	3,55	2750				
KBr	0,838	4,660	61,8	4190				
RbBr	1,390	4,890	172,0	5220				
LiI	0,032	5,670	0,17	3780				
NaI	0,159	6,370	3,55	5790				
KI	0,838	6,680	61,2	7260				
RbI	1,380	6,950	170,0	8820				

 α et γ anions >>>> α et γ cations

 γ (anions) suit l'échelle d'électronégativités de Pauling γ_F - $<\gamma_{Cl}$ - $<\gamma_{Br}<\gamma_{I}$ -

γ (cations) suit l'échelle des électropositivités

Polarisation = f(distance électron-noyau) d >>>> α et γ >>>>

Comparaison des cœfficients de polarisabilités et d'hyperpolarisabilités de différents halogénures alcalins. (R. Adair et al. Phys Rev. B, 39, n°5, 3337,1989).

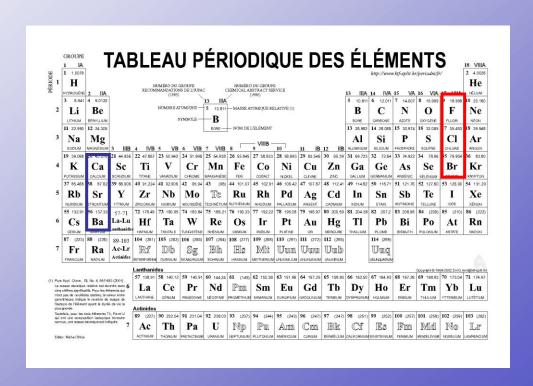
Optique linéaire — Polarisabilité

$$\frac{\overline{n_0}^2 - 1}{4\pi} = f \sum_i N_i \alpha_i$$

Equation de Clausius Mossoti

Relation entre la polarisabilité d'un matériau et son indice n

Optique non linéaire


Hyperpolarisabilité $n_2 = \frac{f^4 \pi}{2n_0} \sum_{i} N_i \gamma_i$

Ni: nombre d'atomes i par unité de volume dans le matériau, de polarisabilité α_i et d'hyperpolarisabilité γ_i

f est le facteur de champ local, facteur de Lorentz = $(n_0^2 + 2)/3$

Indices non linéaires de quelques cristaux ioniques

Matériaux	n ₂ (10 ⁻¹³ esu)
CaF ₂	0.43
SrF ₂	0.50
BaF ₂	0.67
NaF	0.34
NaCl	1.59
NaBr	3.26
KF	0.75
KCl	1.30
KBr	2.93

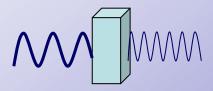
Optique non linéaire

$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) E(\omega) + \chi^{(3)} E(\omega) E(\omega) + \ldots \right)$$

$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) E(\omega) + \chi^{(3)} E(\omega) E(\omega) + \ldots \right)$$

$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) E(\omega) + \chi^{(3)} E(\omega) E(\omega) + \ldots \right)$$

$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) E(\omega) + \chi^{(3)} E(\omega) E(\omega) + \ldots \right)$$


$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) E(\omega) + \chi^{(3)} E(\omega) E(\omega) + \ldots \right)$$

$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) E(\omega) + \chi^{(3)} E(\omega) E(\omega) + \ldots \right)$$

$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) + \chi^{(3)} E(\omega) E(\omega) + \ldots \right)$$

$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) + \chi^{(3)} E(\omega)$$

Génération de second harmonique (GSH)

γ(n) susceptibilités diélectriques à l'ordre n

- Mélange de fréquences
- Effet Pockels

- Génération de troisième harmonique
- Mélange de fréquences, Raman stimulé
- Effet Kerr, variation de l'indice non linéaire d'ordre 2 (n₂) en fonction de l'intensité du champ électrique

 $\chi(3)$: E³ combinaison de trois excitations à différentes fréquences ω_i

2 règles fondamentales:

- conservation de l'énergie (E = $h\omega/2\pi$, où h est la constante de Planck)
- conservation de l'impulsion ou encore transfert de moment (p=hk/ 2π , où k est le vecteur d'onde)

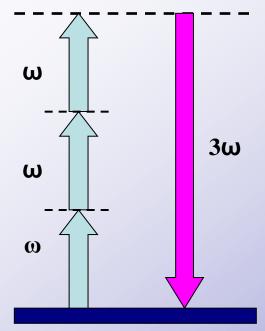
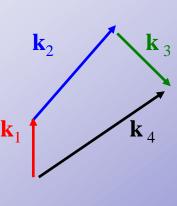
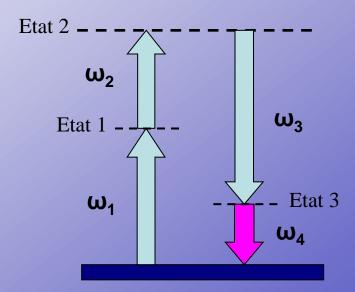




Schéma énergétique du processus de génération de troisième harmonique

 $\chi(3)$ (-3 ω , ω , ω , ω)

$$k_4 = k_1 + k_2 + k_3$$

Mélange de fréquences

$$\omega_4 = \omega_1 + \omega_2 - \omega_3$$

Susceptibilité d'ordre trois

 $\chi^{(3)}$

- Mélange à quatre ondes

 $\chi^{(3)}(-\omega_4,\omega_1,-\omega_2,\omega_3)$

- Effet Kerr Optique

 $\chi^{(3)}(-\omega,\omega,-\omega,\omega)$

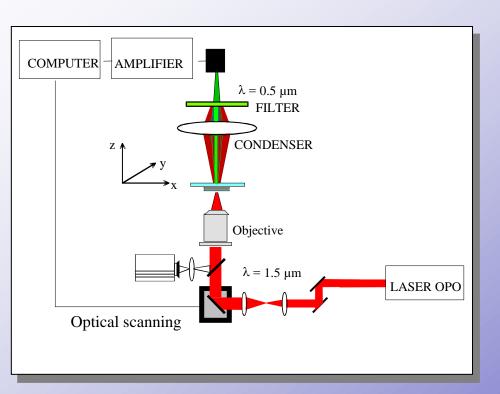
Autofocalisation
Automodulation de phase
Propagation Soliton
Commutateur optique

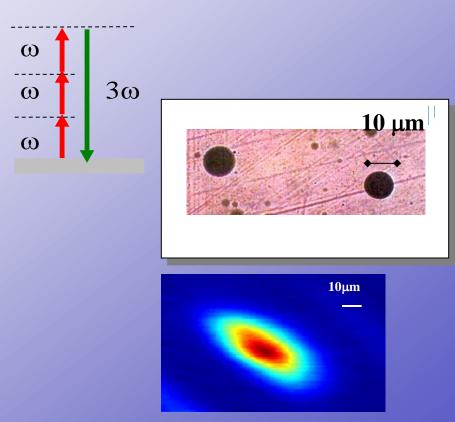
- Génération de troisième harmonique

 $\chi^{(3)}(-3\omega,\omega,\omega,\omega)$

- Effet Raman Stimulé

 $\chi^{(3)}(-\omega_s,\omega_p,-\omega_s,\omega_p)$

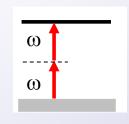

- Absorption deux photons


 $\chi^{(3)}(-\omega,-\omega,\omega,\omega)$

Milieu transparent (hors résonance)

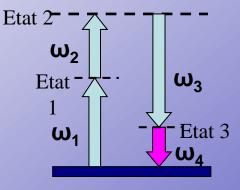
Aucun des états intermédiaires 1, 2 ou 3 <=> état réel électronique ou vibrationnel du matériau

Génération de Troisième Harmonique


Micro-cartographie de 3ème harmonique obtenue autour d'une particule métallique d'argent de 10 micromètres dans un verre pour une excitation à 1500 nm et une mesure à 500 nm.

Milieu absorbant (résonance)

Au moins un des états intermédiaires 1, 2 ou 3 <=> état réel électronique ou vibrationnel du matériau


Absorption à deux photons

Raman stimulé

Absorption à deux photons

Addition simultanée de deux photons, équivalente en énergie à un photon plus énergétique qui donnerait lieu à la même absorption

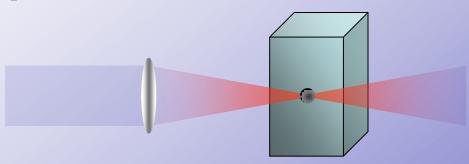
Mélange de fréquences $\omega_4 = \omega_1 + \omega_2 - \omega_3$

Schéma énergétique de l'absorption à deux photons

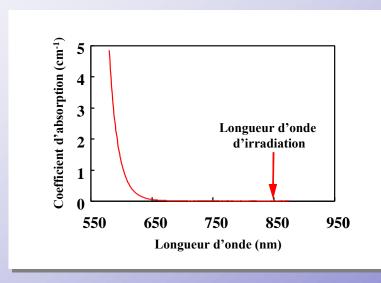
Indice de réfraction total dans un milieu absorbant, comporte alors une partie réelle et imaginaire: $n = (n_0 + ik_0) + (n_2 + ik_2)I$, où k_0 correspond à l'absorption à un photon reliée à la partie imaginaire du $\chi(1)(-\omega; \omega)$

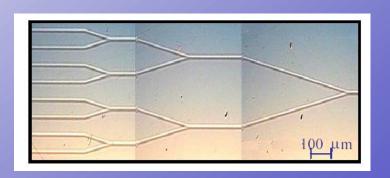
et k_2 à l'absorption biphotonique impliquant la partie imaginaire de $\chi(3)(-\omega;\omega;-\omega;\omega)$.

Limitation optique de puissance

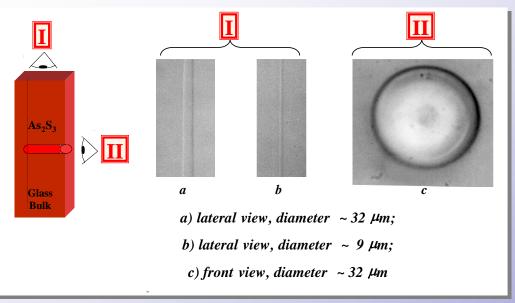

Inscription laser

Absorption


$$\alpha = \alpha_0 + \beta I + \dots$$

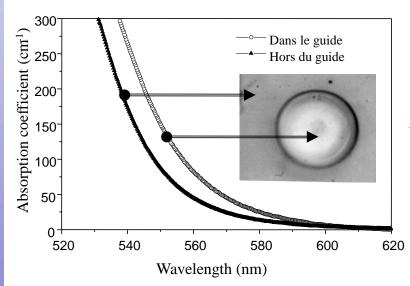


Photoinscription laser 3D haute résolution



Inscription d'un guide d'onde au sein d'un bloc de verre As_2S_3 en le déplaçant le long de l'axe de focalisation par augmentation de l'indice de réfraction dans la zone irradiée.

Verre: matériau amorphe (non cristallin) présentant le phénomène de transition vitreuse

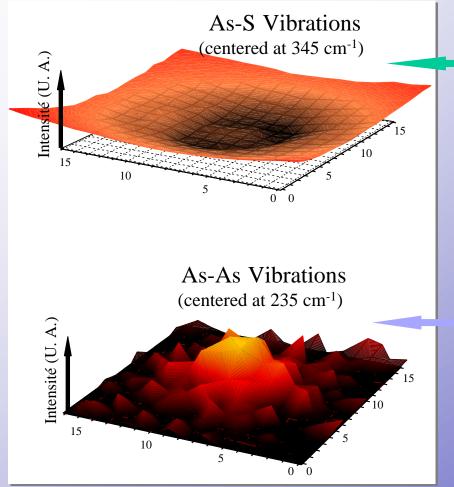


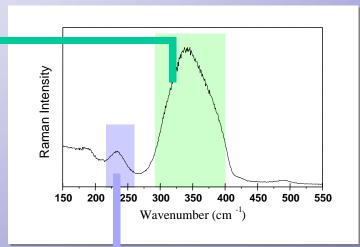
1	1 1,00% H					-								Atp://ees	ekgi-apitrib	r(horsodes)	W	2 4008 He
•	H CROSSIN	2 IA		NECOS.	UNITATIONAL CONTRACTOR AND CONTRACTO		0 1		O DU GROUR BETRACT SE CINNO	DOCE			IS IIIA	H NA	15 VA	16 VIA	17 VIA	неши
	3 6.941						13 194						5 10.011	6 12.011	T 14000		9 10.000	
2	Li	Be					5 10.811	- MASSEA	оомости	DATABLE.			В	C	N	О	F	Ne
	LEHRAN	12 24 109				NAME -							13 25.907	DARGONE 14 DECRE	A2075 15 30323	0015016 16 32.06	FUUOR 17 39,493	NEON
							EON!	HOMDE	LILENGOV						D 50.971	S		
1	Na	Mg	3 IIB			6 VIR	T VIR		VIIIB -	10	n B	12 118	Al	Si	nomen	5	CI	Ar
	29 00.000							26 55.545	2T 58.900		19 03.540		31 69 723	32 72.64	33 74 923	34 75.9	35 79.994	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTMININ	CALOUM	SCHOUN	11446	MACILM	CHECKE	MINARES		COBALT	NOOS	corne	216	GALLEM	SERMOUN	ANSONO	BÉLÉNISA	BROMS	KREFTON
	37 65.466			49 91,226	41 92.900	42 15.16	20 000				47 107.EF	45 112.41	49 114.82	50 118.71	51 121.30	\$2 127.60	\$3 129.10	
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
		50 11710		2010010A	новим			AUTHORIN		TE 1950S	ANGOVE	CACHAGA	PONE	ETAN: 2023	\$1 206.00	70111AC	1000 85 (210)	3010H
6		Ra	57-71 La-La		Ta	W	Re	Os	Ir	Pt			TI	Ph		Po		
	Cs	Da	Landanide	Hf	121	TANDERS		US	II	Ft	Au	Hg	11	FU	Bi	POLONIA	At	Rn
	RT (223)		89,103	164 (201)			197 (264)			110 (28%)			140.00	114 pres	BIRCON	POLUMO	Aller	- MUUN
7	Fr	Ra	Ac-Lr	TRiff	TDib	Se	Bih	THIs	Mit	Whee.	Umm	Umb		Uwa				
	PMASSAN	MOUN	Actinides	NOTE THE PERSON	DOWN		BOHNUM	HISSUM		UNIVERSITY	PUNNA	UNIVERSA		DESGREEN				
				Lanthani												DOMEST T	me over this i	original to
20	Aug. Own.	N. St. 4, 1814	eo pserq	97 138,61		59 140.91	68 144,24										70 173,04	71 124.67
Le sonne altratique relações sui distrativa ante de sins sistinas aprillantils. Plesa ha diferente qui rivest para de sicultidas caldendas, la unima entre constitutas indique le condra de seque de l'Acesso de (166 mort apart la durie de six la plina paralle.			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			LALTHANE	CERLW	PRODUCES	RECONSE	PROMETRICA	SAMPLE	EUROPER	SACOLINIA	TERRUM	CYSPROSUS.	HOLMUM	ENBUM	94000	YTTERBUM	UNEFUR	
			Actinides															
Touteting poor his trees differently Th, Part U real and one composition belonging to make composition belonging to make company and production.						92 29603	93 (217)	94 (340)	95 (343)	96 (247)	97 (347)	98 (251)				102 (290)		
			7	Ac	Th	Pa	111	Nim	IPtn	Arm	Cm	Blk	(0.6	IE.c	Pien	Mid	No	Lir

Chalcogénure: composé chimique comprenant un chalcogène (O, S, Se, Te, Po) comme anion Ex: As₂S₃, GeSe₃, Ge₂Sb₂Te₅ Verres chalcogénures: opaques dans le visible,

Microscopie Optique

Inscription d'un guide d'onde au sein d'un bloc de verre As_2S_3 (laser femtoseconde 800 nm)




transparents dans l'IR

Photodarkening

variation de l'indice de réfraction

 $\Delta n = 10^{-3} - 10^{-4}$

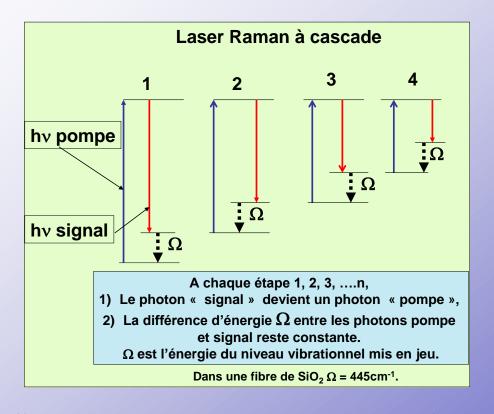
Rupture de liaisons AS-S

pour former

des liaisons AS-AS et S-S

 As_2S_3

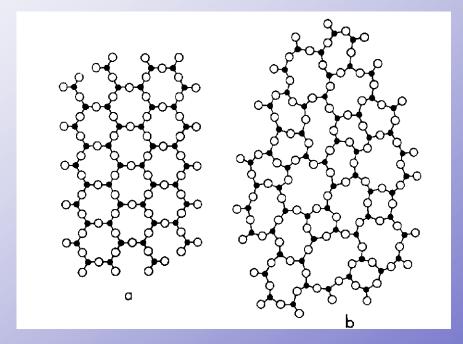
Lorsque 2 faisceaux lasers interagissent dans le matériau et présentent une différence de fréquence <--> niveau vibrationnel du matériau irradié



Possible par résonnance de transférer l'intensité lumineuse d'un premier faisceau (ω_1) vers le second (ω_2)

Phénomène d'amplification ou de gain Raman

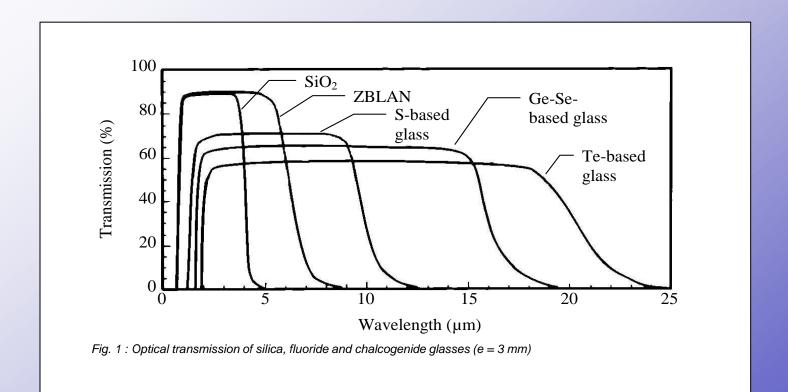
La différence $(\omega_1-\omega_2)$ des fréquences du faisceau pompe (excitateur) et du faisceau à amplifier (signal) correspond à Ω la fréquence de transition de l'état fondamental vers un niveau vibrationnel excité.


Application industrielle: propagation d'un signal infra-rouge dans une fibre optique

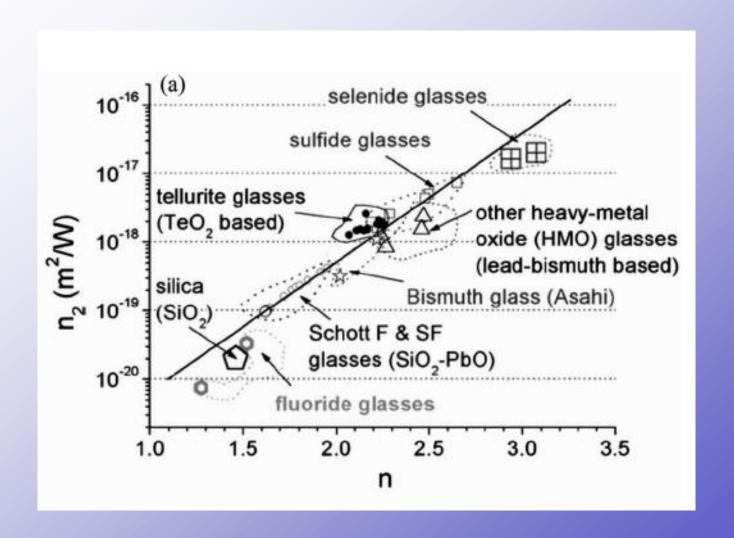
Une fibre de silice irradiée par un laser « pompe » délivrant un photon d'une énergie de $6897 \mathrm{cm^{-1}}$ (λ =1450nm) et par un deuxième laser émettant à une énergie de $6452 \mathrm{cm^{-1}}$ (λ = 1550 nm) va donner deux photons à cette même énergie $6452 \mathrm{cm^{-1}}$. La différence entre ces deux énergies $445 \mathrm{~cm^{-1}}$ est très exactement une fréquence de vibration de la silice, celle correspondant au mouvement de l'oxygène dans le plan bissecteur de la liaison Si-O-Si couplant deux tétraèdres [SiO₄].

Verre: solide amorphe dont l'arrangement atomique présente un ordre à courte distance et un désordre à longue distance; « liquide figé »

Silice cristallisée (quartz)

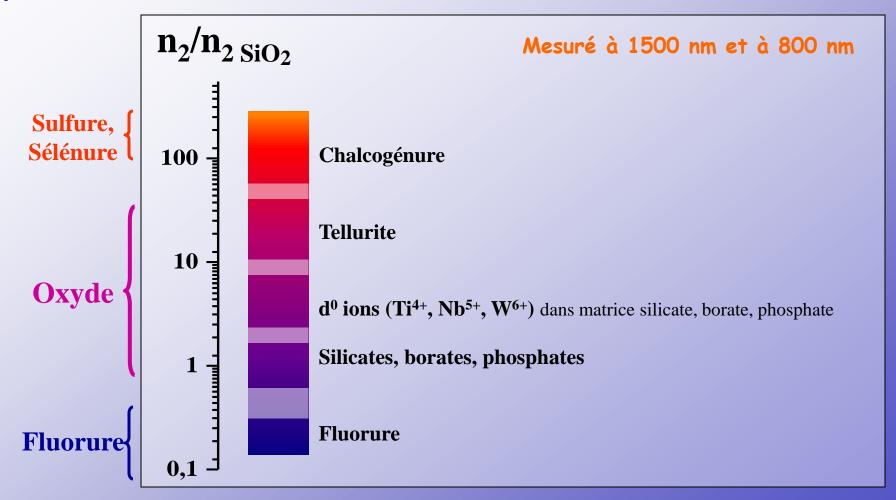


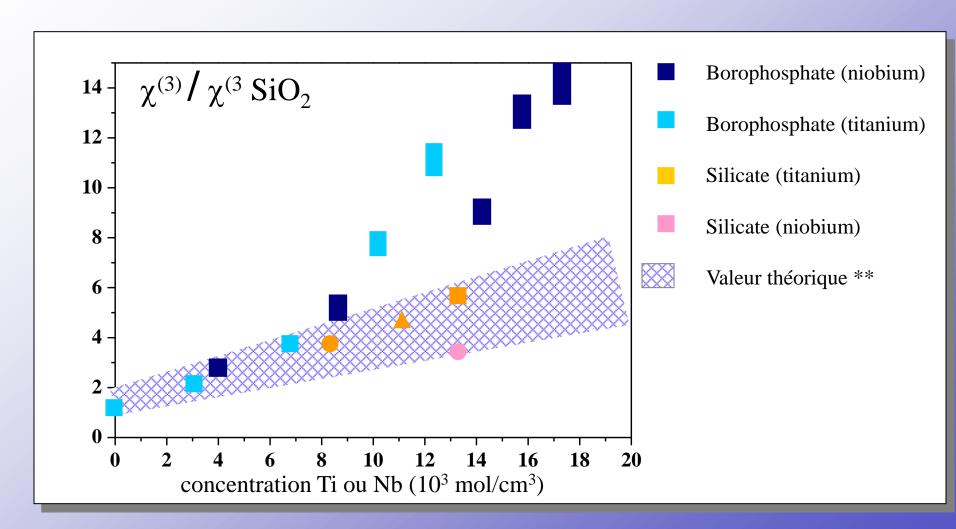
Silice amorphe


Structure/propriétés

Transmission optique

Verres

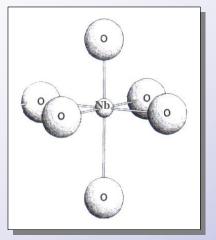




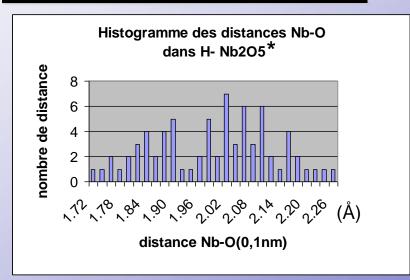
$$n = n_0 + n_2 I$$

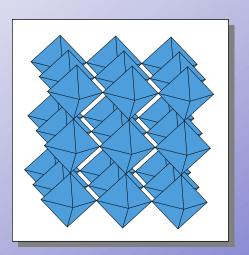
$$\chi^{(3)}(-\omega,\omega,-\omega,\omega)$$

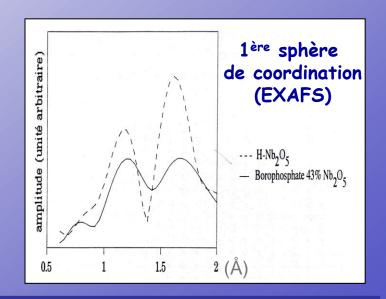
Mesuré à 800 nm

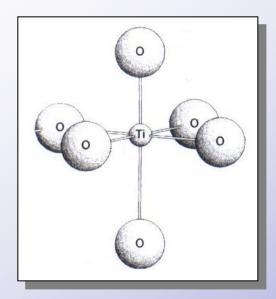

Etablissement d'un réseau 3D niobates ou chaines 1D oxyde de titane

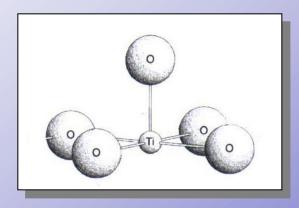
Verres borophosphates

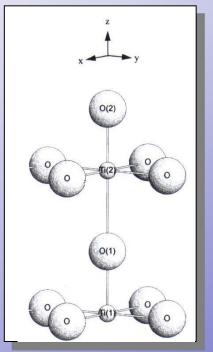

Faible concentration en niobium


| Forte concentration en niobium

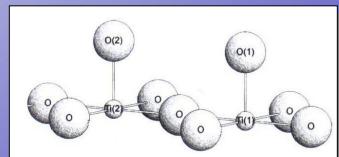


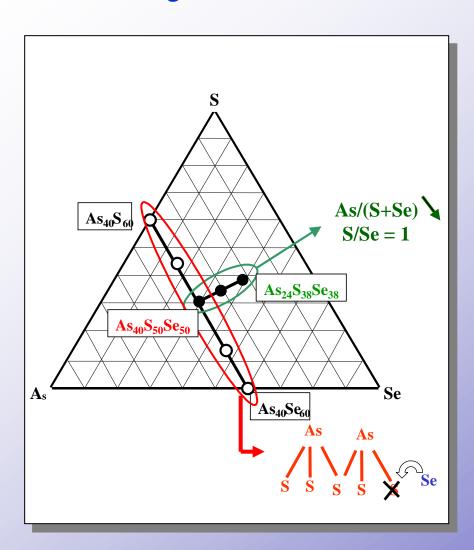

Distribution des distances Nb-O

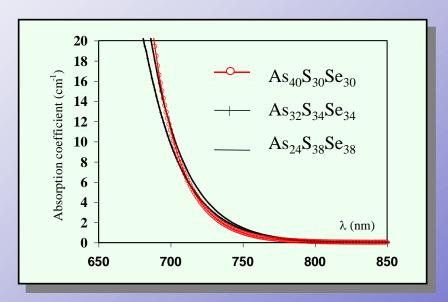


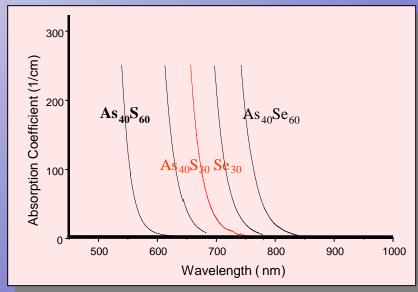


Faible concentration en titane

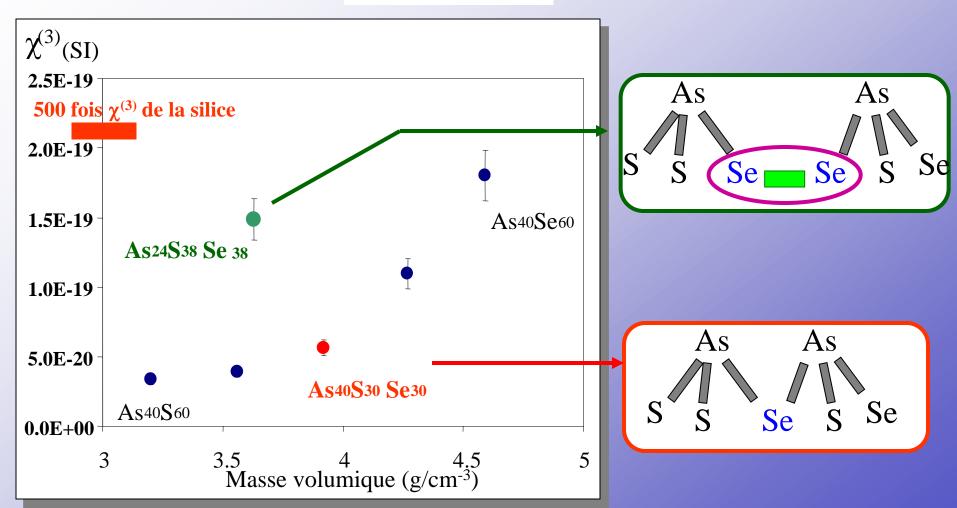


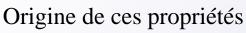

Forte concentration en titane




Phosphate et Borophosphate

Silicate

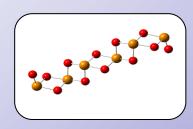



Mesuré à 1,6 µm

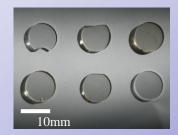
 $\lambda=1.6~\mu m;~\tau=100~fs;~E_p=4\cdot10^{-6}~J;~f_p=80~MHz;$

Verres tellurites

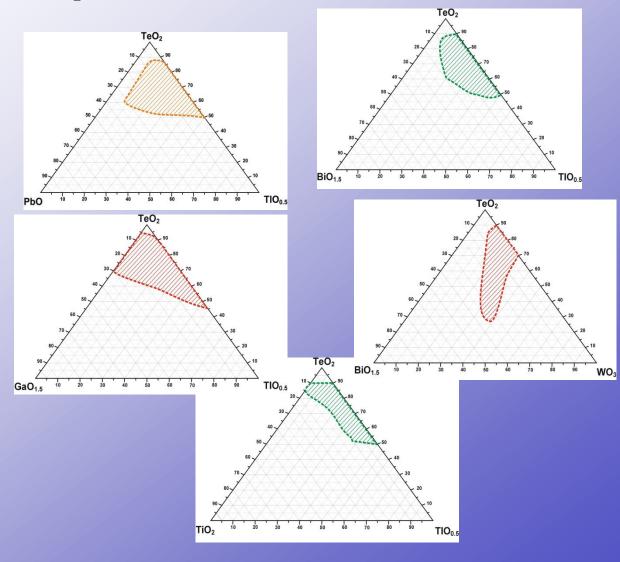
Verres à base de TeO₂: matériaux prometteurs pour l'optoélectronique



• influence de la structure (ordre à courte et à moyenne distances)

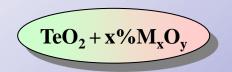

- → nécessite une meilleure connaissance de la structure réelle des verres:
 - Spectroscopies Raman et IR
 - Modélisation: dynamique de réseaux (software Lady)
 - EXAFS, XANES
 - RMN
 - Diffraction des rayons X et des neutrons
 - Diffusion totale des rayons X et des neutrons
 - Modélisation à l'échelle atomique

Verres à base de TeO₂: nouveaux domaines vitreux

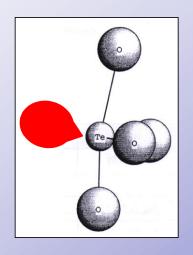


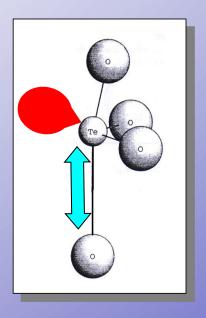
Fusion en creuset platine

Mise en forme: trempe à l'air du mélange fondu entre deux blocs métalliques séparés par un anneau

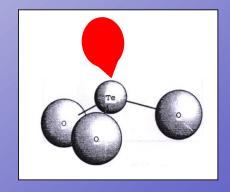


Recuit / Polissage

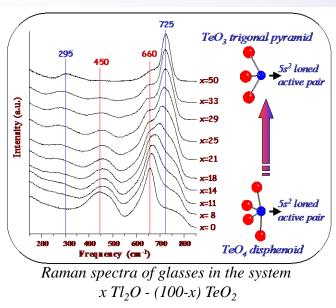

Domaines vitreux à 800°C



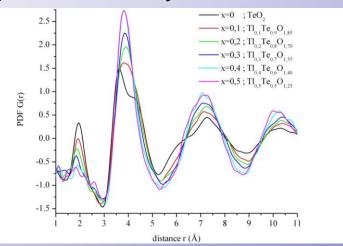
Dépolymérisation avec l'ajout d'oxyde modificateur


TeO₄ disphénoïde

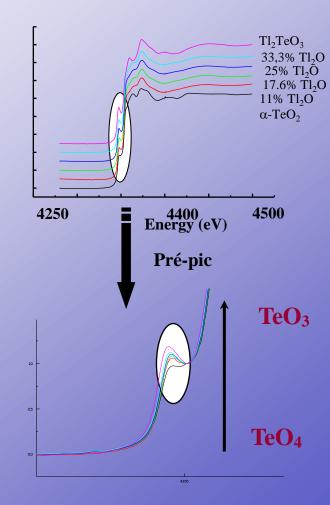
TeO₃₊₁ entité



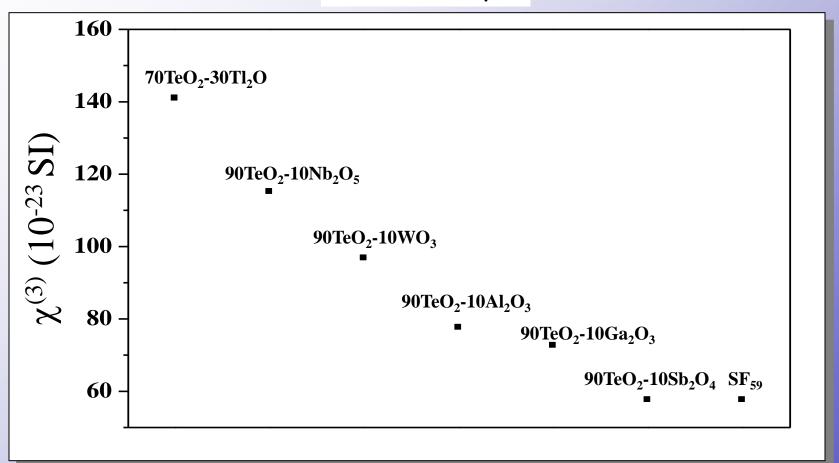
TeO₃ pyramide triangulaire



Verres tellurites


Diffusion Raman

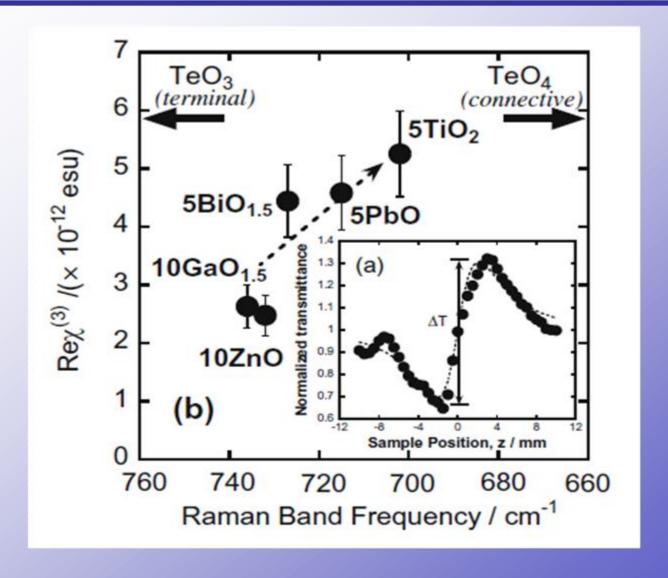
Diffusion totale des rayons X



XANES au seuil Te-LIII

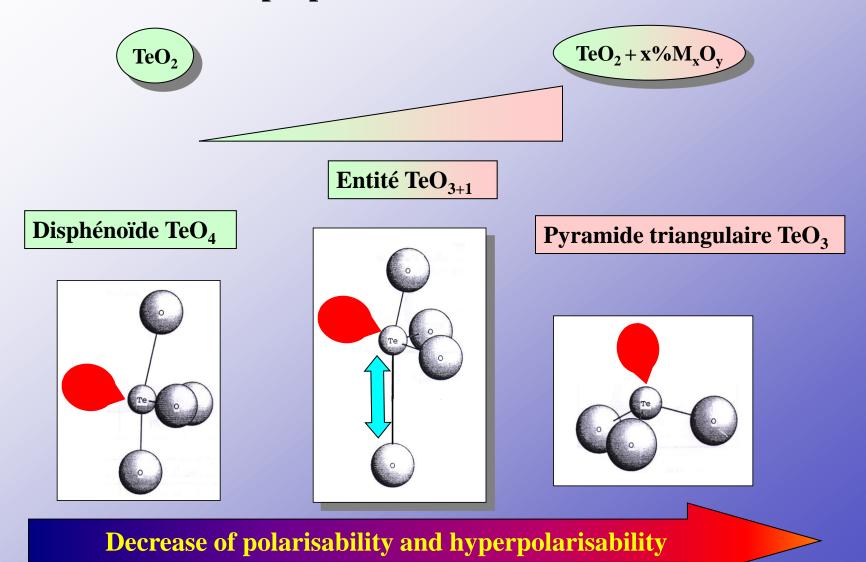
Dépolymérisation du verre avec l'ajout de Tl₂O

Mesuré à 1,5 µm


 $ns^2de Tl>>d^0>>d^{10}$

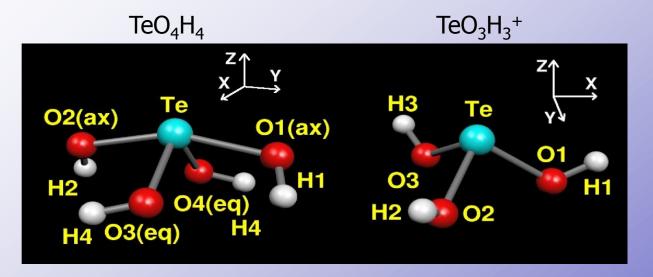
Mesuré à 800 nm

Glasses	$\chi 3 \text{ m}^2/\text{V}^2 (10^{-23}) \pm 10\%$	
85TeO ₂ -15BaO	323	
85TeO ₂ -15TiO ₂	395.5	
90TeO ₂ -10TiO ₂	421.6	
$75 \text{TeO}_2 - 25 \text{TlO}_{0.5}$	482.3	
$60\text{TeO}_2\text{-}40\text{TlO}_{0.5}$	476.1	
50TeO ₂ -50TlO _{0.5}	294	
85TeO ₂ -15NbO _{2.5}	350.6	
58TeO ₂ -36TlO _{0.5} -5BiO _{1.5}	632.2	
66.5TeO ₂ -28.5TlO _{0.5} -05PbO	580	
56TeO ₂ -24TlO _{0.5} -20PbO	567	
57TeO ₂ -38TlO _{0.5} -05PbO	562	
51TeO ₂ -34TlO _{0.5} -15PbO	510.05	
54TeO ₂ -36TlO _{0.5} -10GaO _{1.5}	445.4	
58.5TeO ₂ -39TlO _{0.5} -2.5GaO _{1.5}	359.5	


Influence de la concentration et du rapport TeO₄/TeO₃

Influence de la concentration et du rapport TeO₄/TeO₃

Verres tellurites

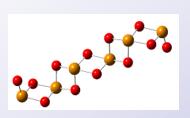

Relation structure / propriétés non-linéaires des verres tellurites

Verres tellurites

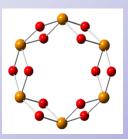
Calcul des propriétés optiques non-linéaires

Calculs ab initio (DFT), orbitales moléculaires sur les unités structurales TeO₄ et TeO₃.

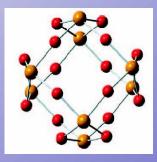
		TeO ₄ H ₄	TeO ₃ H ₃ +	Remark
	<γ ^{Te/p} >	470	203	>>
	<γ ^{Te-O<i>bp</i>>}	206	175	~
	<γ ^{O/p} >	71	60	~
	<γ ^{O-H<i>bp</i>} >	39	17	Small values
	<γ ^{cluster} >	2018	1134	$\sum < \gamma^{bond} >$


Paire libre 5s² (Te *lp*) dans la géométrie TeO₄ est à l'origine de la forte hyperpolarisabilité des verres à base de TeO₂

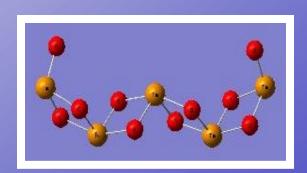
Calcul des propriétés optiques non-linéaires

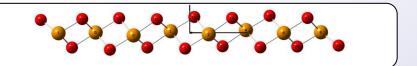

Calculs ab initio (DFT), "approche moléculaire"

Détermination géométrique de clusters (TeO₂)_p


Clusters stables plus ou moins réalistes

1D « chain-like »; p=6


2D « circle »; p=6


 $3D \ll cage \gg; p=8$

Susceptibilité non-linéaire χ^3

- . $\chi(3)$ structure type "chaîne linéaire" ~ $\chi(3)$ (exp.)
- La polymérisation contribue fortement à l'hyperpolarisabilité. (Paire libre Te: 5%!!); délocalisation électronique le long des chaînes.

8TeO₂

	N	α	γ
PL/Te	8	145,8	10072
PL/Op	28	73,5	35252
Te-Oax	14	125,4	91328
Te-Oeq	14	90,2	42806
=O+	8	29 9	10072

Par unité TeO₂

	Z	α	γ	pourcentage
PL/Te	1	18,2	1259	5%
PL/Op	4	10,5	5036	20%
Te-Oax	2	17,9	13047	51%
Te-Oeq	2	12,9	6115	24%

Analyse des orbitales moléculaires localisées

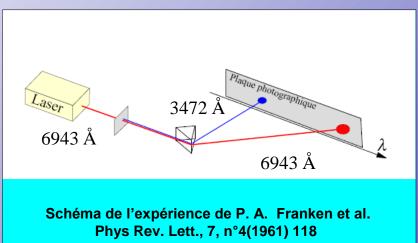
La plus grande contribution aux valeurs de γ vient des liaisons Te-O au sein des ponts Te-O-Te

Les liaisons Te- O_{ax} fournissent 51% de la valeur de γ Les liaisons Te- O_{eq} fournissent 24% de la valeur de γ

75% des valeurs de γ sont situés dans les ponts Te-O-Te

Tandis que les paires libres des atomes de tellure n'en fournissent que 5%.

Total


$$\mathbf{P} = \varepsilon_0 \left(\chi^{(1)} \mathbf{E}(\omega) + \chi^{(2)} \mathbf{E}(\omega) \mathbf{E}(\omega) + \chi^{(3)} \mathbf{E}(\omega) \mathbf{E}(\omega) \mathbf{E}(\omega) + \ldots \right)$$

 λ (ω)

Matériau non linéaire

NON CENTROSYMMETRIQUE $\chi(2) \neq 0$ λ (ω) $\lambda/2$ (2ω)

Génération de second harmonique (doublage de fréquence)

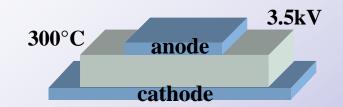
Le rayonnement du laser après avoir traversé le cristal de quartz est dévié par un prisme. Le développement de la plaque photographique permet d'observer le rayonnement incident (rouge) et le rayonnement de longueur d'onde moitié (bleu).

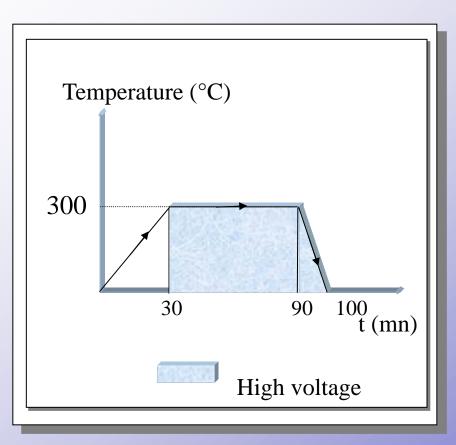
$$\vec{P}(2\omega) = \varepsilon_0 \chi_{eff}^{(2)} \vec{E}(\omega) \vec{E}(\omega)$$

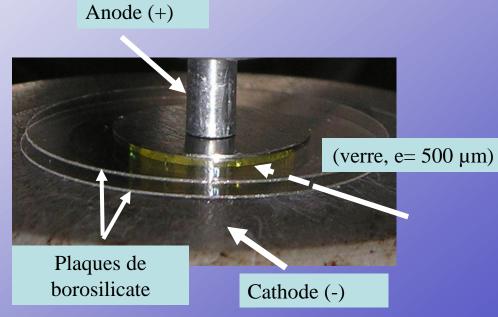
Milieux anisotropes \Leftrightarrow certains cristaux \Leftrightarrow $\chi^{(2)} \neq 0$

LiNbO₃: $d_{33} = 34,40 \text{ pm/V}$; utilisé dans les dispositifs électro-optiques

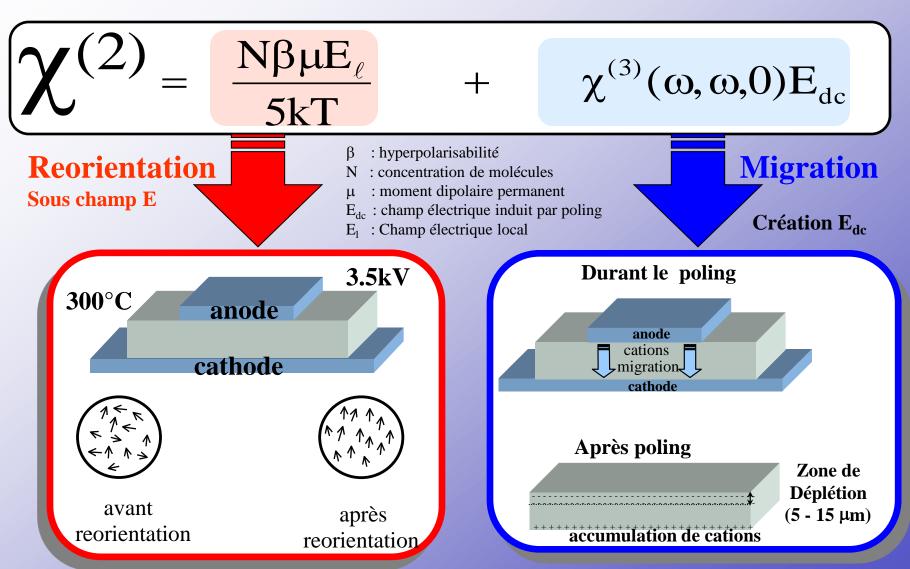
 $\chi(2) \neq 0$; Isotopie brisée par des contraintes extérieures


Poling thermique Poling optique


Poling thermique assisté par irradiation

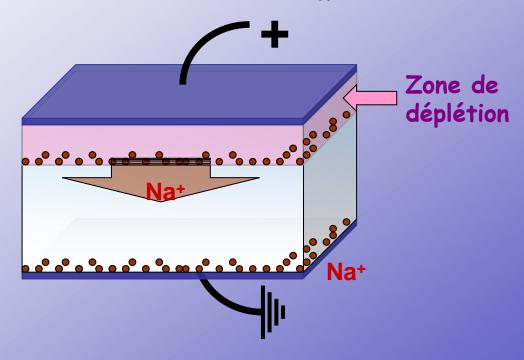

Cristallisation phase noncentrosymmétrique dans un verre

Poling thermique



Second harmonique

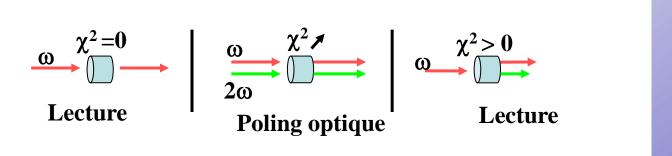
Poling thermique



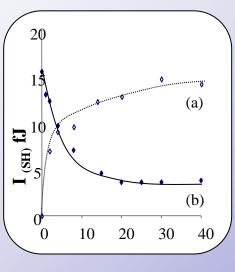
Poling thermique

Pas de modification structurale Migration de Na⁺

En fonction des conditions de poling (température, tension, durée): zone de déplétion entre 5 mm et 10 mm


$$\chi(2) \approx 1.50 \text{ pm/V}$$

 $\chi(2) \approx 1.0 \text{ pm/V} (SiO_2)$

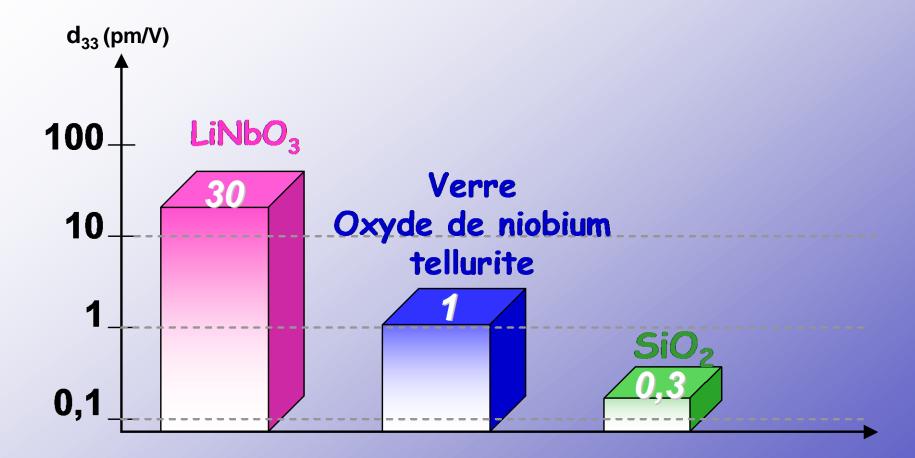


Poling optique

Anisotropie locale induite lorsque deux champs électriques intenses de fréquences (ω , 2ω) interagissent avec le matériau.

Time (minutes)

GSH: verre 70 mol% TeO₂ - 30 mol% ZnO


- (a) SHG evolution versus writing time
 (I₁₀₆₄ = 2.9, I₅₃₂ = 0.70)
 (b) SHG evolution versus reading time
- $(I_{reading} = 2 \text{ GW/cm}^2).$

Laser source: Nd/YAG 1064 nm

Pulse duration: 70ps Repetition rate: 10Hz

Evolution du signal de SH caractéristique de l'inscription et de l'effacement d'une $\chi(2)$ par poling optique:

- intensité augmente et atteint un maximum;
- le signal décroit exponentiellement (en environ 6 min; effacement de la non-linéarité photo-induite lors de la lecture).

Remerciements: SPCTS: O. Masson, M. Colas, J.R. Duclère, A. Berghout, O. Noguera, A. Mirgorodsky, D. Hamani, G. Delaizir, J. Cornette.

V. Rodriguez (ISM, Bordeaux), E Fargin (ICMCB, Bordeaux), T. Cardinal (ICMCB, Bordeaux)
V. Couderc (XLIM, Limoges); M. Nogami, T. Hayakawa (NITECH Nagoya, Japon)
S. Suehara (NIMS Tsukuba, Japon); M. Smirnov (Fock Institute of Physics, Saint-Pétersbourg, Russie)