

La Physique des Extrêmes, École d'été de Physique e2φ, Clermont-Ferrand, 25-28 août 2014

Le plasma de quarks-gluons

Philippe Rosnet

Laboratoire de Physique Corpusculaire de Clermont-Ferrand

Alice et la soupe de quarks et de gluons

Plongeon dans l'infiniment petit : découverte du monde des quarks

L'interaction forte : de la couleur au plasma de quarks-gluons

Voyage au pays d'ALICE : la transformation du plomb

Une fenêtre sur l'Univers : une soupe de particules extrêmement chaude

Plongeon au cœur de la matière

Mise en évidence du noyau atomique

Expérience de Rutherford (1911)

- Diffusion élastique de particules α (noyau ⁴He) sur une feuille de plomb
- Certaines particules sont fortement déviées, comme si elles se heurtaient à un centre de charge au cœur de l'atome : le **noyau atomique**

- Découverte du neutron en 1932 (J. Chadwick, Nobel 1935)
- Particules élémentaires dans les années 30 : proton, neutron, électron et neutrino

Le zoo des particules

Découverte (dans les années 1950) de dizaines de particules sensibles aux forces nucléaires, appelées **hadrons**, dont certaines au comportement étrange car toujours produites par paires

Les baryons $B = 1$							
Genre	Nom	Symbole	Ι	I ₃	S	Y = S + B	Q(e)
Baryons non étranges	Nucléon (spin 1/2)	Р	1/2	1/2	0	1	1
		N		-1/2			0
		Λ٥	0	0	-1	0	0
		Σ^+		1			1
Baryons	Hypérons	Σ^0	1	0	-1	0	0
étranges	(spin 1/2)	Σ^{-}		-1			-1
		Ξ		1/2			0
			1/2		-2	-1	
		Ξ-		-1/2			-1
	spin 3/2	Ω-	0	0	-3	-2	-1

Les mésons $B = 0$								
Nom	Symbole	Ι	I_3	S	Y = S + B	$Q = I_3 + \frac{Y}{2}$		
	π^+		1			1		
Pions (spin zéro)	π^0	1	0	0	0	0		
	π^{-}		-1			-1		
Mésons êta (spin zéro)	η	0	0	0	0	0		
	<i>K</i> +	1/9	1/2	1	1	1		
Kaons	K ⁰	1/2	-1/2			0		
(spin zéro)	$\overline{K^0}$		1/2			0		
	K-	1/2	-1/2	-1	1	-1		

Nombres quantiques conservés Charge électrique QNombre baryonique BÉtrangeté S

conservés
$$\pi^ p$$
 \rightarrow Λ^0 K^+ π^- lectrique Q = -1 $+1$ = 0 $+1$ -1 ryonique B = 0 $+1$ = $+1$ 0 0 Étrangeté S = 0 0 = -1 $+1$ 0

Construction des hadrons

Classification des hadrons basée sur leurs nombres quantiques (M. Gell-Mann et Y. Ne'eman, 1961)

Composition en quarks des nucléons

d

			\boldsymbol{u}	\boldsymbol{u}	/	
Charge	=	$\frac{2}{3}$ -	$-\frac{1}{3}$ -	$-\frac{1}{3}$	=	0

Découverte des quarks

Relation de de Broglie (1924, Nobel 1929) : Pour améliorer la résolution de la particule sonde, il faut augmenter son énergie

Expérience du SLAC (1969, Nobel 1990)

- Diffusion d'électrons sur des protons (cible d'hydrogène) à l'aide d'un accélérateur linéaire de 3 km
- Le proton n'est pas ponctuel et possède un rayon de charge moyen

$$= 0.877 \pm 0.005 \text{ fm} [PDG2012]$$

et est constitué de trois briques plus élémentaires

Encore des quarks...

Hypothèse d'un 4^{ème} type de **quark dit « charmé » c** pour résoudre un problème théorique (S. Glashow, J. Iliopoulos et L. Maiani, 1970)

 \rightarrow Découverte expérimentale (1974) d'un nouveau méson $J/\psi = |c\bar{c}\rangle$

Classification des hadrons (u, d, s, c)

Tableau des particules de matière

L'interaction forte : de la couleur au plasma de quarks-gluons

Voyage au pays d'ALICE : la transformation du plomb

Une fenêtre sur l'Univers : une soupe de particules extrêmement chaude

Pourquoi les quarks sont-ils colorés?

Principe d'exclusion de Pauli (1925, Nobel 1945) Dans un système physique, deux fermions (particules de spin demi-entier) ne peuvent pas être dans le même état quantique

Anomalie du $\Delta^{++} = |uuu\rangle$ Spin S = 3/2 \rightarrow états de Δ^{++} où les quarks u (de spin S = 1/2) sont tous dans le même état quantique

$$\Delta^{++}(S_z = +3/2) = |u \uparrow u \uparrow u \uparrow u \uparrow \rangle + 3/2$$

Hypothèse de la couleur (Greenberg, 1964) Les quarks portent un nombre quantique de couleur – rouge (R), vert (V) ou bleu (B) – qui différencie l'état quantique des trois u : $\Delta^{++} = |u_R u_V u_B\rangle$

$$\Delta^{++}(S_z = -3/2) = |u \downarrow u \downarrow u \downarrow u \downarrow \rangle + -3/2$$

+ +1/2+ -1/2

La chromodynamique quantique

L'état quantique d'un quark est une superposition des états de couleur

Une transformation locale engendre une non invariance globale de la couleur du système $\longrightarrow \Delta^{++}$?!?

Deux transformations locales connectées assurent une invariance globale de la couleur du système → invariance de jauge

L'invariance globale de la couleur d'un système de quarks nécessite un « échange » de couleur entre les quarks :

- **couleur** = charge source de l'interaction forte entre quarks
- médiateurs d'échange « transportant la couleur » = gluons (8)

sans masse
de spin 1

Comme le photon pour la QED

• la théorie est la ChromoDynamique Quantique (ou QCD)

Neutralité des hadrons

Confinement des quarks

Les quarks interagissent très fortement → pas de quark isolé dans la nature, uniquement confinés par paquets dans les hadrons

Neutralité des hadrons

Les hadrons sont observés expérimentalement car ils interagissent moins fortement : neutres de couleur = **blancs**

➔ portée de l'interaction forte ~ 1 fm

Quark = couleur (rouge, vert, bleu)

Antiquark = anticouleur représentée par la couleur complémentaire (cyan, magenta, jaune)

La preuve par l'expérience

Section efficace σ

Quantité caractéristique de l'interaction entre deux particules proportionnelle à la probabilité d'interaction

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_q e_q^2 \quad \text{avec} \quad 3 = \text{nombre de couleurs}$$

Υ 10 J/ψ $\psi(2S)$ Les piques sont des Zétats résonants 10 u + d + s + c = 3.33 \boldsymbol{R} 10 1 -s = 23.67|u+d|u + d + s + c + b =-1 10 10² 10 \sqrt{s} [GeV] (énergie dans le centre de masse)

 $e_q = \text{charge \'electrique du quark } q$

Une manifestation des gluons (1979)

Représentation graphique des interactions

Lagrangien de la QCD en théorie quantique des champs

$$\begin{aligned} \mathcal{J} &= \frac{1}{4g^2} \left(\mathcal{G}_{\mu\nu} \mathcal{G}_{\mu\nu} + \frac{1}{2} \overline{g}_{i} \left(i \partial^{\mu} \mathcal{D}_{\mu} + \mathcal{M}_{i} \right) \overline{g}_{i} \right) \text{ quark} \\ \text{where } \mathcal{G}_{\mu\nu}^{\alpha} &= \partial_{\mu} \mathcal{P}_{\nu}^{\alpha} - \partial_{\mu} \mathcal{P}_{\mu}^{\alpha} + \mathcal{G}_{\mu\nu}^{\alpha} \mathcal{P}_{\mu} \left(\mathcal{P}_{\mu}^{\alpha} \right) \text{ gluon} \\ \text{and } \mathcal{D}_{\mu} &= \partial_{\mu} + i t^{\alpha} \mathcal{P}_{\mu}^{\alpha} \end{aligned}$$

Diagrammes de Feynman (Prix Nobel de Physique 1965)

Les effets du vide quantique

Si $\alpha_S \ll 1 \rightarrow$ théorie perturbative : possibilité de faire des calculs finis et fiables (sinon la théorie est dite non perturbative)

Liberté asymptotique

La constante de couplage de l'interaction forte α_S dépend de l'énergie Q mise en jeu dans la collision

Q < 1 GeV

→ domaine non perturbatif
 ≈ quarks dans les hadrons
 Calculs utilisant des méthodes
 numériques : QCD sur réseau

Q > 1 GeV
→ domaine perturbatif
≈ collisions à haute énergie

Q >> 1 GeV

→ les quarks n'interagissent pratiquement plus avec les gluons = liberté asymptotique (1973, D. Gross, H. Politzer et F. Wilczek, Nobel 2004)

En résumé : qu'est-ce qu'un proton ?

Proton

- Objet constitué de trois quarks dominants (dits de valence) en interaction via des gluons et une mer de paires quark-antiquark
- m_u et $m_d < 5 \text{ MeV/c}^2 \rightarrow$ la masse du proton provient essentiellement des interactions entre quarks

Etude expérimentale du proton

- caractéristiques globales électriques et magnétiques
- → MAMI (Mayence) : contribution du LPC
- distribution interne des quarks, antiquarks et gluons
- → CERN et JLab (Etats-Unis)

Vers le plasma de quarks-gluons

Un système nucléaire (noyau) soumis à des conditions extrêmes :

- forte pression (état de grande densité)
- très haute température

possèdera un grande densité d'énergie → les quarks deviennent libres

Les nucléons (blancs de couleur) fondent pour former un **milieu coloré** : le **plasma de quarks-gluons** (ou **QGP**)

Diagramme de phase de QCD (Cabibbo et Parisi, 1975)

L'interaction forte : de la couleur au plasma de quarks-gluons

Voyage au pays d'ALICE : la transformation du plomb

Une fenêtre sur l'Univers : une soupe de particules extrêmement chaude

Comment recréer en laboratoire le plasma de quarks-gluons ?

Il faut **comprimer et chauffer des paquets de protons et de neutrons** en les envoyant violemment les uns contre les autres : *i.e.* engendrer des collisions de **noyaux atomiques lourds**

Idée exprimée par le peintre chinois Li Keran en 1989

Nuclei as heavy as bulls through collision generate new states of matter.

Evolution d'une collision d'ions lourds

Un programme de recherche mondial

Energie dans le centre de masse nucléon-nucléon (\sqrt{s}) de 3 GeV en 1971 à 2760 GeV en 2010

28

Le Large Hadron Collider ou LHC

Collisions de noyaux de plomb (²⁰⁸Pb) avec le LHC au Laboratoire européen pour la physique des particules ou CERN (près de Genève) :

sur 27 km de circonférence à environ 100 m sous terre

avec 2 faisceaux de paquets de 70 millions noyaux de plomb circulant quasiment à la vitesse de la lumière : 11 000 tours par seconde

 grâce à 1200 aimants supraconducteurs (14 m de long pour 35 t) refroidis à -271°C (à l'aide d'hélium liquide)

Une collision à très haute énergie

Deux particules qui entrent en collision à une vitesse proche de celle de la lumière produisent plusieurs particules par **conversion de l'énergie en matière** :

 $E = m c^2$

La collision est étudiée à l'aide des particules produites ⇒ il faut donc les reconstruire avec un détecteur de particules

ALICE : A Large Ion Collider Experiment

ALICE dans la réalité

Une quantité pharaonique de données

Dans le détecteur ALICE :

plusieurs milliers
 de collisions par
 seconde

jusqu'à 30 000 particules par collision Pb-Pb Les données enregistrées au LHC pour les trois premières années :

o équivalent à 700 ans de film full-HD

= 3 millions de DVD

o 1 heures de calculs sur un PC pour reconstruire une collision Pb-Pb

Collision plomb-plomb

Comment traiter les données ?

Quelques sondes du QGP

Température du QGP

Rayonnement du QGP à la manière d'un corps noir
→ photons selon la loi de Planck : densité spectrale d'énergie

36

QGP

Densité du QGP

Lors de leur traversée du QGP : perte d'énergie des quarks et des gluons énergétiques proportionnelle à la densité de charges de couleur

énergie des ortionnelle à QGP QGP Rapport de modification nucléaire Marticules

 $R_{AA} = \frac{N_{\rm PbPb}^{\rm particules}}{N_{\rm pp}^{\rm particules}}$

Photons et Z (insensibles à
 l'interaction forte) pas affectées

Accord entre expériences pour les hadrons chargés

> Courbes théoriques permettent de déduire la densité de gluons dans le QGP : $dN_g/dy \approx 2800$

Fluidité du QGP

Asymétrie spatiale de collisions non centrales traduite en asymétrie dans l'espace des impulsions selon la décomposition en série de Fourier : $E\frac{d^3N}{d^3p} = \frac{1}{2\pi}\frac{d^2N}{p_Tdp_Tdy}\left(1+2\sum_{n=1}^{\infty}v_n\cos(n\varphi)\right)$

 \succ Le second coefficient v2 (écoulement elliptique) correspond au rapport du nombre de particules émises dans la direction du petit axe sur le nombre selon la direction du grand axe \rightarrow quantité fonction de la viscosité

Dépendance en impulsion transverse bien reproduite par les calculs hydrodynamiques qui modélisent un fluide de très faible viscosité

> Le QGP se comporte comme un fluide parfait

Température de transition

Production statistique des hadrons lors du refroidissement du système à la température de transition QGP \rightarrow gaz hadronique : nombre de hadrons d'espèce *i*

$$N_{i} = \frac{V}{2\pi^{2}} g_{i} \int_{0}^{+\infty} \frac{\exp(-\frac{E-\mu_{i}}{kT})}{1 \pm \exp(-\frac{E-\mu_{i}}{kT})} p^{2} dp$$

- g_i le nombre de degrés de liberté
- μ_i le potentiel chimique
- + pour des fermions
- pour des bosons

Bon accord entre données et prédictions théoriques

➢ Résultat de l'ajustement aux données après la transition de phase QGP → hadrons :

- température du système
 T_{fo} = 156 MeV
- densité baryonique

 $\mu_{b} = 0 \text{ MeV}$

$$\rightarrow \rho_{\rm B} = 0$$

volume du système
 V = 5380 fm³

L'interaction forte : de la couleur au plasma de quarks-gluons

Voyage au pays d'ALICE : la transformation du plomb

> Une fenêtre sur l'Univers :

une soupe de particules extrêmement chaude

Retour vers le big bang

The big Balk

i think

6000 de

300 thousand years

1 thousand million years

3 minutes Transition de QCD : $QGP \rightarrow hadrons$ ~ 10 µs 10⁻⁴³ seconds 10³² degrees 10²⁷ degrees 10¹⁵ degrees 10¹⁰ degrees 10⁹ degrees radiation positron (anti-electron) particles proton heavy particles neutron carrying meson the weak force hydrogen quark deuterium anti-quark e helium C. electron L lithium

<u>Recombinaison électromagnétique</u> : noyaux + $e^- \rightarrow$ atomes, ainsi l'Univers devient transparent aux photons et produit le fond diffus cosmologique (CMB)

~ 400 000 ans

15 thousand million years

L'Univers des quarks et des gluons

Densité baryonique ρ_B

Conclusion : la Physique des Extrêmes

Pour aller plus loin

Livre sur la physique des particules et la cosmologie

Passeport pour les deux infinis, Dunod, 2^{ème} édition, septembre 2013

 Revue en ligne sur la physique des particules <u>http://elementaire.web.lal.in2p3.fr/</u>

Articles sur la QCD et le QGP

- La chromodynamique quantique, La Recherche, n°123, juin 1981
- *Les premières microsecondes de l'Univers*, Pour la science, n°344, juin 2006
- Collisions d'ions lourds avec ALICE au LHC : les trois premières années, Ph. Crochet (LPC), Reflet de la Physique, n°39, mai 2014

 Site Internet sur le projet LHC http://www.lhc-france.fr/

